Subscribe

RSS Feed (xml)

Powered By

Skin Design:
Free Blogger Skins

Powered by Blogger

Search Your Question

Friday, July 18, 2008

Basic C Questions to test ur expertise-5

What is the quickest sorting method to use?


The answer depends on what you mean by quickest. For most sorting problems, it just doesn’t matter how quick the sort is because it is done infrequently or other operations take significantly more time anyway. Even in cases in which sorting speed is of the essence, there is no one answer. It depends on not only the size and nature of the data, but also the likely order. No algorithm is best in all cases.
There are three sorting methods in this author’s toolbox that are all very fast and that are useful in different situations. Those methods are quick sort, merge sort, and radix sort.
The Quick Sort
The quick sort algorithm is of the divide and conquer type. That means it works by reducing a sorting problem into several easier sorting problems and solving each of them. A dividing value is chosen from the input data, and the data is partitioned into three sets: elements that belong before the dividing value, the value itself, and elements that come after the dividing value. The partitioning is performed by exchanging elements that are in the first set but belong in the third with elements that are in the third set but belong in the first Elements that are equal to the dividing element can be put in any of the three setsthe algorithm will still work properly.
The Merge Sort
The merge sort is a divide and conquer sort as well. It works by considering the data to be sorted as a sequence of already-sorted lists (in the worst case, each list is one element long). Adjacent sorted lists are merged into larger sorted lists until there is a single sorted list containing all the elements. The merge sort is good at sorting lists and other data structures that are not in arrays, and it can be used to sort things that don’t fit into memory. It also can be implemented as a stable sort.
The Radix Sort
The radix sort takes a list of integers and puts each element on a smaller list, depending on the value of its least significant byte. Then the small lists are concatenated, and the process is repeated for each more significant byte until the list is sorted. The radix sort is simpler to implement on fixed-length data such as ints.

When should the register modifier be used? Does it really help?

The register modifier hints to the compiler that the variable will be heavily used and should be kept in the CPU’s registers, if possible, so that it can be accessed faster.
There are several restrictions on the use of the register modifier.
First, the variable must be of a type that can be held in the CPU’s register. This usually means a single value of a size less than or equal to the size of an integer. Some machines have registers that can hold floating-point numbers as well.
Second, because the variable might not be stored in memory, its address cannot be taken with the unary & operator. An attempt to do so is flagged as an error by the compiler. Some additional rules affect how useful the register modifier is. Because the number of registers is limited, and because some registers can hold only certain types of data (such as pointers or floating-point numbers), the number and types of register modifiers that will actually have any effect are dependent on what machine the program will run on. Any additional register modifiers are silently ignored by the compiler.
Also, in some cases, it might actually be slower to keep a variable in a register because that register then becomes unavailable for other purposes or because the variable isn’t used enough to justify the overhead of loading and storing it.
So when should the register modifier be used? The answer is never, with most modern compilers. Early C compilers did not keep any variables in registers unless directed to do so, and the register modifier was a valuable addition to the language. C compiler design has advanced to the point, however, where the compiler will usually make better decisions than the programmer about which variables should be stored in registers.
In fact, many compilers actually ignore the register modifier, which is perfectly legal, because it is only a hint and not a directive.


What is page thrashing?

Some operating systems (such as UNIX or Windows in enhanced mode) use virtual memory. Virtual memory is a technique for making a machine behave as if it had more memory than it really has, by using disk space to simulate RAM (random-access memory). In the 80386 and higher Intel CPU chips, and in most other modern microprocessors (such as the Motorola 68030, Sparc, and Power PC), exists a piece of hardware called the Memory Management Unit, or MMU.
The MMU treats memory as if it were composed of a series of pages. A page of memory is a block of contiguous bytes of a certain size, usually 4096 or 8192 bytes. The operating system sets up and maintains a table for each running program called the Process Memory Map, or PMM. This is a table of all the pages of memory that program can access and where each is really located.
Every time your program accesses any portion of memory, the address (called a virtual address) is processed by the MMU. The MMU looks in the PMM to find out where the memory is really located (called the physical address). The physical address can be any location in memory or on disk that the operating system has assigned for it. If the location the program wants to access is on disk, the page containing it must be read from disk into memory, and the PMM must be updated to reflect this action (this is called a page fault).
Because accessing the disk is so much slower than accessing RAM, the operating system tries to keep as much of the virtual memory as possible in RAM. If you’re running a large enough program (or several small programs at once), there might not be enough RAM to hold all the memory used by the programs, so some of it must be moved out of RAM and onto disk (this action is called paging out). The operating system tries to guess which areas of memory aren’t likely to be used for a while (usually based on how the memory has been used in the past). If it guesses wrong, or if your programs are accessing lots of memory in lots of places, many page faults will occur in order to read in the pages that were paged out. Because all of RAM is being used, for each page read in to be accessed, another page must be paged out. This can lead to more page faults, because now a different page of memory has been moved to disk.
The problem of many page faults occurring in a short time, called page thrashing, can drastically cut the performance of a system. Programs that frequently access many widely separated locations in memory are more likely to cause page thrashing on a system. So is running many small programs that all continue to run even when you are not actively using them. To reduce page thrashing, you can run fewer programs simultaneously. Or you can try changing the way a large program works to maximize the capability of the operating system to guess which pages won’t be needed. You can achieve this effect by caching values or changing lookup algorithms in large data structures, or sometimes by changing to a memory allocation library which provides an implementation of malloc() that allocates memory more efficiently. Finally, you might consider adding more RAM to the system to reduce the need to page out.


How can you determine the size of an allocated portion of memory?

You can’t, really. free() can , but there’s no way for your program to know the trick free() uses. Even if you disassemble the library and discover the trick, there’s no guarantee the trick won’t change with the next release of the compiler.


Can static variables be declared in a header file?

You can’t declare a static variable without defining it as well (this is because the storage class modifiers static and extern are mutually exclusive). A static variable can be defined in a header file, but this would cause each source file that included the header file to have its own private copy of the variable, which is probably not what was intended.


How do you override a defined macro?

You can use the #undef preprocessor directive to undefine (override) a previously defined macro.


How can you check to see whether a symbol is defined?

You can use the #ifdef and #ifndef preprocessor directives to check whether a symbol has been defined (#ifdef) or whether it has not been defined (#ifndef).
Can you define which header file to include at compile time? Yes. This can be done by using the #if, #else, and #endif preprocessor directives. For example, certain compilers use different names for header files. One such case is between Borland C++, which uses the header file alloc.h, and Microsoft C++, which uses the header file malloc.h. Both of these headers serve the same purpose, and each contains roughly the same definitions. If, however, you are writing a program that is to support Borland C++ and Microsoft C++, you must define which header to include at compile time. The following example shows how this can be done:
#ifdef _ _BORLANDC_ _
#include
#else
#include
#endif


Can a variable be both const and volatile?

Yes. The const modifier means that this code cannot change the value of the variable, but that does not mean that the value cannot be changed by means outside this code. For instance, in the example in FAQ 8, the timer structure was accessed through a volatile const pointer. The function itself did not change the value of the timer, so it was declared const. However, the value was changed by hardware on the computer, so it was declared volatile. If a variable is both const and volatile, the two modifiers can appear in either order.


Can include files be nested?

Answer Yes. Include files can be nested any number of times. As long as you use precautionary measures , you can avoid including the same file twice. In the past, nesting header files was seen as bad programming practice, because it complicates the dependency tracking function of the MAKE program and thus slows down compilation. Many of today’s popular compilers make up for this difficulty by implementing a concept called precompiled headers, in which all headers and associated dependencies are stored in a precompiled state.
Many programmers like to create a custom header file that has #include statements for every header needed for each module. This is perfectly acceptable and can help avoid potential problems relating to #include files, such as accidentally omitting an #include file in a module

No comments:

Archives